Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Methods Mol Biol ; 2791: 133-137, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532101

RESUMEN

Light is one of the main signals detected by plants that influence plant growth, development, and function. The light features that influence plants are the photoperiod, light intensity, and spectral composition. Manipulating light intensity and spectrum to obtain better plant growth and quality has become a popular research object in recent years. Here we describe the usage of the spectrometer Lighting Passport Pro to determine the impact of light intensity and share of individual waves in its spectrum in environment-controlled plant production systems on the growth, development, and soluble carbohydrate and phenolic synthesis of common buckwheat.


Asunto(s)
Fagopyrum , Fotosíntesis , Desarrollo de la Planta , Luz
2.
Methods Mol Biol ; 2791: 121-126, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532099

RESUMEN

The chlorophyll a fluorescence measurement method is used to determine the efficiency of the photosynthetic apparatus and to assess the physiological state of photosynthetic organisms. The measurement is simple, fast, and noninvasive. It is a precise tool to study photosynthesis response under stress conditions or to assess the impact of specific environmental factors on plants. Here we describe the usage of this method in environmental-controlled plant production systems differing in temperature or light source on the growth and development of common buckwheat.


Asunto(s)
Clorofila , Pisum sativum , Clorofila A , Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo , Fotosíntesis/fisiología , Cinética , Hojas de la Planta/metabolismo
3.
Methods Mol Biol ; 2791: 127-131, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38532100

RESUMEN

Ranges of portable systems to measure leaf gas-exchange parameters are available. They allow real-time measurements of the photosynthesis rate (A), transpiration rate (E), stomatal conductance (gs), and intercellular CO2 concentration (Ci). Photosynthetic CO2 uptake is one of the most frequently studied plant physiological processes. The measurement is precise, simple, and noninvasive to perform in vivo. We describe the use of this method in environmental-controlled plant production systems at different temperatures on the growth and development of common buckwheat.


Asunto(s)
Fotosíntesis , Hojas de la Planta , Dióxido de Carbono , Hojas de la Planta/fisiología , Transpiración de Plantas/fisiología , Plantas
4.
Int J Mol Sci ; 23(15)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35955532

RESUMEN

The area of farming lands affected by increasing soil salinity is growing significantly worldwide. For this reason, breeding works are conducted to improve the salinity tolerance of important crop species. The goal of the present study was to indicate physiological or biochemical parameters characterizing three durum wheat accessions with various tolerance to salinity. The study was carried out on germinating seeds and mature plants of a Polish SMH87 line, an Australian cultivar 'Tamaroi' (salt-sensitive), and the BC5Nax2 line (salt-tolerant) exposed to 0-150 mM NaCl. Germination parameters, electrolyte leakage (EL), and salt susceptibility index were determined in the germinating caryopses, whereas photosynthetic parameters, carbohydrate and phenolic content, antioxidant activity as well as yield were measured in fully developed plants. The parameters that most differentiated the examined accessions in the germination phase were the percentage of germinating seeds (PGS) and germination vigor (Vi). In the fully developed plants, parameters included whether the plants had the maximum efficiency of the water-splitting reaction on the donor side of photosystem II (PSII)-Fv/F0, energy dissipation from PSII-DIo/CSm, and the content of photosynthetic pigments and hydrogen peroxide, which differentiated studied genotypes in terms of salinity tolerance degree. Salinity has a negative impact on grain yield by reducing the number of seeds per spike and the mass of one thousand seeds (MTS), which can be used as the most suitable parameter for determining tolerance to salinity stress. The most salt-tolerant BC5Nax2 line was characterized by the highest PGS, and Vi for NaCl concentration of 100-150 mM, content of chlorophyll a, b, carotenoids, and also MTS at all applied salt concentrations as compared with the other accessions. The most salt-sensitive cv. 'Tamaroi' demonstrated higher H2O2 concentration which proves considerable oxidative damage caused by salinity stress. Mentioned parameters can be helpful for breeders in the selection of genotypes the most resistant to this stress.


Asunto(s)
Salinidad , Triticum , Australia , Clorofila A , Genotipo , Peróxido de Hidrógeno , Complejo de Proteína del Fotosistema II , Fitomejoramiento , Cloruro de Sodio/farmacología , Estrés Fisiológico , Triticum/genética
5.
Sci Rep ; 12(1): 257, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997114

RESUMEN

Light-emitting diodes (LEDs) and high-pressure sodium lamps (HPS) are among the most commonly used light sources for plant cultivation. The objective of this study was to evaluate the effect of two controlled-environment production systems differing in light sources on growth, photosynthetic activity, and secondary metabolism of common buckwheat. We hypothesized that LED light with the majority of red and blue waves would increase physiological and biochemical parameters compared to sunlight supplemented with HPS lamps. The experiment was performed in a phytotronic chamber (LEDs) and in a greenhouse (solar radiation supplemented with HPS lamps as a control). The effects were analyzed at the flowering phase with biometric measurements, leaf chlorophyll index, the kinetics of chlorophyll a fluorescence, content of soluble carbohydrates and phenolics in the leaves. Applied LED light decreased the biomass but stimulated the production of phenolics compared to control plants. In control plants, a positive correlation between flavonoid content and energy dissipation from photosystem II (DIo/CSm) was found, while in plants under LEDs total pool of phenolic content correlated with this parameter and the quantum yield of electron transport (φ Ro and ψ Ro) was lower than that of the control, probably affecting buckwheat biomass.


Asunto(s)
Producción de Cultivos , Productos Agrícolas/efectos de la radiación , Fagopyrum/efectos de la radiación , Luz , Iluminación/instrumentación , Fotosíntesis/efectos de la radiación , Metabolismo Secundario/efectos de la radiación , Biomasa , Clorofila A/metabolismo , Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/metabolismo , Fagopyrum/crecimiento & desarrollo , Fagopyrum/metabolismo , Cinética , Fenoles/metabolismo
6.
Int J Mol Sci ; 22(14)2021 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-34299055

RESUMEN

Fusarium culmorum is a worldwide, soil-borne plant pathogen. It causes diseases of cereals, reduces their yield, and fills the grain with toxins. The main direction of modern breeding is to select wheat genotypes the most resistant to Fusarium diseases. This study uses seedlings and plants at the anthesis stage to analyze total soluble carbohydrates, total and cell-wall bound phenolics, chlorophyll content, antioxidant activity, hydrogen peroxide content, mycotoxin accumulation, visual symptoms of the disease, and Fusarium head blight index (FHBi). These results determine the resistance of three durum wheat accessions. We identify physiological or biochemical markers of durum wheat resistance to F. culmorum. Our results confirm correlations between FHBi and mycotoxin accumulation in the grain, which results in grain yield decrease. The degree of spike infection (FHBi) may indicate accumulation mainly of deoxynivalenol and nivalenol in the grain. High catalase activity in the infected leaves could be considered a biochemical marker of durum sensitivity to this fungus. These findings allowed us to formulate a strategy for rapid evaluation of the disease severity and the selection of plants with higher level, or resistance to F. culmorum infection.


Asunto(s)
Biomarcadores/metabolismo , Fusarium/fisiología , Enfermedades de las Plantas/microbiología , Plantones/fisiología , Tricotecenos/metabolismo , Triticum/fisiología , Genotipo , Plantones/microbiología , Triticum/clasificación , Triticum/genética , Triticum/microbiología
7.
Int J Mol Sci ; 22(5)2021 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-33800930

RESUMEN

Common buckwheat (Fagopyrum esculentum Moench), a pseudocereal crop, produces a large number of flowers, but this does not guarantee high seed yields. This species demonstrates strong abortion of flowers and embryos. High temperatures during the generative growth phase result in an increase in the degeneration of embryo sacs. The aim of this study was to investigate proteomic changes in flowers and leaves of two common buckwheat accessions with different degrees of heat tolerance, Panda and PA15. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyze the proteome profiles. Analyses were conducted for flower buds, open flowers capable of fertilization, and wilted flowers, as well as donor leaves, i.e., those growing closest to the inflorescences. High temperature up-regulated the expression of 182 proteins. The proteomic response to heat stress differed between the accessions and among their organs. In the Panda accession, we observed a change in abundance of 17, 13, 28, and 11 proteins, in buds, open and wilted flowers, and leaves, respectively. However, in the PA15 accession there were 34, 21, 63, and 21 such proteins, respectively. Fifteen heat-affected proteins were common to both accessions. The indole-3-glycerol phosphate synthase chloroplastic-like isoform X2 accumulated in the open flowers of the heat-sensitive cultivar Panda in response to high temperature, and may be a candidate protein as a marker of heat sensitivity in buckwheat plants.


Asunto(s)
Fagopyrum/metabolismo , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Hojas de la Planta/metabolismo , Proteoma , Termotolerancia/genética , Electroforesis en Gel Bidimensional , Fagopyrum/embriología , Fagopyrum/genética , Fagopyrum/crecimiento & desarrollo , Respuesta al Choque Térmico/genética , Calor , Indol-3-Glicerolfosfato Sintasa/biosíntesis , Indol-3-Glicerolfosfato Sintasa/genética , Metionina Adenosiltransferasa/biosíntesis , Metionina Adenosiltransferasa/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Espectrometría de Masas en Tándem , Regulación hacia Arriba
8.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255746

RESUMEN

Despite abundant flowering throughout the season, common buckwheat develops a very low number of kernels probably due to competition for assimilates. We hypothesized that plants with a shorter flowering period may give a higher seed yield. To verify the hypothesis, we studied nutrient stress in vitro and in planta and analyzed different embryological and yield parameters, including hormone profile in the flowers. In vitro cultivated flowers on media with strongly reduced nutrient content demonstrated a drastic increase in degenerated embryo sacs. In in planta experiments, where 50% or 75% of flowers or all lateral ramifications were removed, the reduction of the flower competition by half turned out to be the most promising treatment for improving yield. This treatment increased the frequency of properly developed embryo sacs, the average number of mature seeds per plant, and their mass. Strong seed compensation under 50% inflorescence removal could result from increased production of salicylic and jasmonic acid that both favor more effective pollinator attraction. Plants in single-shoot cultivation finished their vegetation earlier, and they demonstrated greater single seed mass per plant than in control. This result suggests that plants of common buckwheat with shorter blooming period could deliver higher seed yield.


Asunto(s)
Fagopyrum/genética , Flores/genética , Reproducción/genética , Semillas/genética , Fagopyrum/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Polinización/genética , Estaciones del Año , Semillas/crecimiento & desarrollo
9.
Int J Mol Sci ; 20(7)2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-30959807

RESUMEN

Common buckwheat is a valuable crop, mainly due to the beneficial chemical composition of its seeds. However, buckwheat cultivation is limited because of unstable seed yield. The most important reasons for the low yield include embryo and flower abortion. The aim of this work is to verify whether high temperature affects embryological development in this plant species. The experiment was conducted on plants of a Polish cultivar 'Panda' and strain PA15, in which the percentage of degenerating embryo sacs was previously determined and amounted to 32% and 10%, respectively. The plants were cultivated in phytotronic conditions at 20 °C (control), and 30 °C (thermal stress). The embryological processes and hormonal profiles in flowers at various developmental stages (buds, open flowers, and wilted flowers) and in donor leaves were analyzed in two-month-old plants. Significant effects of thermal stress on the defective development of female gametophytes and hormone content in flowers and leaves were observed. Ovules were much more sensitive to high temperature than pollen grains in both genotypes. Pollen viability remained unaffected at 30 °C in both genotypes. The effect of temperature on female gametophyte development was visible in cv. Panda but not in PA15 buds. A drastic reduction in the number of properly developed embryo sacs was clear in open flowers at 30 °C in both genotypes. A considerable increase in abscisic acid in open flowers ready for fertilization may serve as a signal inducing flower senescence observed in the next few days. Based on embryological analyses and hormone profiles in flowers, we conclude that cv. 'Panda' is more sensitive to thermal stress than strain PA15, mainly due to a much earlier response to thermal stress involving impairment of embryological processes already in the flower buds.


Asunto(s)
Fagopyrum/embriología , Fagopyrum/metabolismo , Flores/embriología , Flores/metabolismo , Calor , Reguladores del Crecimiento de las Plantas/metabolismo , Hojas de la Planta/embriología , Hojas de la Planta/metabolismo , Óvulo Vegetal/citología , Óvulo Vegetal/embriología , Polen/embriología
10.
Exp Appl Acarol ; 76(1): 1-28, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30171478

RESUMEN

Accurate estimation of species richness is often complex as genetic divergence is not always accompanied by appreciable morphological differentiation. In consequence, cryptic lineages or species evolve. Cryptic speciation is common especially in taxa characterized by small and simplified bodies, what makes their proper identification challenging. The cereal rust mite, Abacarus hystrix, was regarded for a long time as a species associated with a wide range of grass hosts, whereas wide host ranges are rather rare in eriophyoid mites. Therefore, the generalist status of A. hystrix was questioned. In this paper we demonstrate that the diversity within Abacarus species associated with grasses is more complex than it was previously thought. The 78 Abacarus mtDNA COI sequences used in this study formed 10 highly supported clades (bootstrap value 99%) and four more distinct genetic lineages were represented by unique sequences. The genetic distances between them ranged from 6.6 to 26.5%. Moreover, morphological study and genetic approach based on the combination of the Poisson Tree Processes model for species delimitation (PTP) and a Bayesian implementation of PTP (bPTP), and Neighbour Joining analyses led to delimitation of a new species within the Abacarus complex: Abacarus plumiger, specialized on smooth brome (Bromus inermis). Furthermore, our analyses demonstrated a pattern of host-associated differentiation within the complex. Overall, our study indicates that cryptic speciation occurs in the grass-associated Abacarus genus, and suggests the need for more extensive sampling using integrative methods.


Asunto(s)
Biodiversidad , Ácaros/clasificación , Filogenia , Animales , Proteínas de Artrópodos/genética , Coevolución Biológica , Femenino , Masculino , Ácaros/anatomía & histología , Ácaros/genética , Ácaros/crecimiento & desarrollo , Ninfa/anatomía & histología , Ninfa/clasificación , Ninfa/genética , Ninfa/crecimiento & desarrollo , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...